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Abstract

In this note we present a general approach to construct large digraphs
from small ones. These are called expanded digraphs, and, as particular
cases, we show the close relationship between lifted digraphs of voltage
digraphs and line digraphs, which are two known ways to obtain dense
digraphs. In the same context, we show the equivalence between the
vertex-splitting and partial line digraph techniques. Then, we give a
sufficient condition for a lifted digraph of a base line digraph to be again
a line digraph. Some of the results are illustrated with two well-known
families of digraphs, namely, the De Bruijn and Kautz digraphs, where
it is shown that both families can be seen as lifts of smaller De Bruijn
digraphs with appropriate voltage assignments.

1 Introduction

In the study of interconnection and communication networks, the theory of digraphs
plays a key role because, in many cases, the links between nodes are unidirectional. In
this theory, there are three concepts that have shown to be very fruitful to construct
good and efficient networks. Namely, those of quotient digraphs, voltage digraphs
and (partial) line digraphs. Roughly speaking, quotient digraphs allow us to obtain
a simplified or ‘condensed’ version of a bigger digraph, while the voltage and line
digraph techniques do the converse by ‘expanding’ a smaller digraph. From this point
of view, it is natural that the three techniques have close relationships. In this paper
we explore some of such interrelations by introducing a general construction that
we call expanded digraphs. These digraphs are obtained from a base graph whose
vertices become vertex sets in the new graph, and the adjacencies are defined from a
set of mappings. A special case is obtained when such mappings are defined within a
group, so obtaining the lifted graphs of base graphs with assigned voltages (elements
of the group) on its arcs. In this context, we show that De Bruijn and Kautz digraphs
can be defined as lifted digraphs of smaller De Bruijn digraphs. Moreover, it is proved
that, under some sufficient conditions, the lift of a base graph that is a line digraph
is again a line digraph. In the more general case of nonrestricted maps, we consider
the quotient digraphs, and the equivalent constructions of vertex-split digraphs and
partial line digraphs. Here, it turns out that the line digraph and quotient operations
commute. Finally, it is proved that the techniques of vertex-splitting and partial line
digraph are equivalent, and some consequences are derived.

1.1 Background

Let us first recall some basic terminology and notation concerning digraphs. For the
concepts and/or results not presented here, we refer the reader to some of the basic
textbooks on the subject; see, for instance, Chartrand and Lesniak [3] or Diestel [4].
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Through this paper, Γ = (V,E) denotes a digraph, with vertex set V and arc
set E. An arc from vertex u to vertex v is denoted by either (u, v), uv, or u → v.
We allow loops (that is, arcs from a vertex to itself), and multiple arcs. The set of
vertices adjacent to and from v ∈ V is denoted by Γ−(v) and Γ+(v), respectively.
Such vertices are referred to as in-neighbors and out-neighbors of v, respectively.
Moreover, δ−(v) = |Γ−(v)| and δ+(v) = |Γ+(v)| are the in-degree and out-degree of
vertex v, and Γ is d-regular when δ+(v) = δ−(v) = d for any v ∈ V .

2 Expanded digraphs

Expanded digraphs are, in fact, a type of compounding that consists of connecting
together several copies of a (di)graph by setting some (directed) edges between any
two copies. Let Γ = (V,E) be a (base) digraph on n vertices. As said before, we
allow loops and multiple arcs. Assume that each vertex v ∈ V has assigned a vertex
set Uv, and each arc e = (u, v) ∈ E has assigned a mapping φuv : Uu → Uv.

Definition 2.1. Let Φ = {φuv : (u, v) ∈ E}. The expanded digraph ΓΦ of Γ with
respect to Φ has vertex set V (ΓΦ) = {Uv : v ∈ V }, and there is an arc from x ∈ Uu
to y ∈ Uv whenever (u, v) ∈ E and φuv(x) = y.

Some important particular cases of this construction are obtained when the map-
pings in Φ are defined from a group:

• Cayley digraphs. Let G be a group with generating set Σ having δ elements.
If Γ is a singleton with assigned vertex set G, δ loops, and each loop e has the
mapping φe : h→ hg, with g ∈ Σ, then the expanded digraph ΓΦ is the Cayley
digraph Cay(G,Σ).

• Coset digraphs. Let G be a group with generating set Σ having δ elements
and with subgroup H. If Γ is a singleton with assigned vertex set {Hh : h ∈ G},
δ loops, and each loop e has the mapping φe : Hh → Hhg, with g ∈ Σ, then
the expanded digraph ΓΦ corresponds to the coset digraph Coset(G,H,Σ).

Two natural generalizations of these concepts are the following (as far as we know,
the second one is a new proposal):

• Lifted (of voltage) digraphs or expanded Cayley digraphs. Let G be a
group with generating set Σ having δ elements. If each vertex of Γ is assigned
to the vertex set G, and each arc e has the mapping α(e) = φe : h→ hg, with
g ∈ Σ, then the expanded digraph ΓΦ is the so-called lifted digraph (or simply
lift) Γα (see Section 3).

• Expanded coset digraphs. Let G be a group with generating set Σ having δ
elements and with subgroup H. If each vertex of Γ is assigned to the vertex set
{Hh : h ∈ G}, and each arc e has the mapping φe : Hh → Hhg, with g ∈ Σ,
then we refer to the corresponding expanded digraph ΓΦ as the expanded coset
digraph Γα.
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3 Voltage and lifted digraphs

When a group is involved in the setting of the mappings, the symmetry of the ob-
tained constructions yield digraphs with large automorphism groups. To our knowl-
edge, one of the first papers where voltage (undirected) graphs were used for con-
struction of dense graphs was that of Alegre, Fiol and Yebra [1], but without using
the name of ‘voltage graphs’. This name was coined previously by Gross [9]. For
more information, see Gross and Tucker [10], Baskoro, Branković, Miller, Plesńık,
Ryan and Širáň [2], and Miller and Širáň [12].

Let Γ be a digraph with vertex set V = V (Γ) and arc set E = E(Γ). Then, given
a group G with generating set Σ, a voltage assignment of Γ is a mapping α : E → Σ.
The lift Γα is the digraph with vertex set V (Γα) = V ×G and arc set E(Γα) = E×G,
where there is an arc from vertex (u, g) to vertex (v, h) if and only if uv ∈ E and
h = gα(uv). Such an arc is denoted by (uv, g).

3.1 De Bruijn and Kautz digraphs

Recall that the De Bruijn digraph B(d, k) has vertices x1x2 . . . xk, where xi ∈ Zd for
i = 1, . . . , k, and adjacencies

x1x2 . . . xk → x2x3 . . . xky, y ∈ Zd. (1)

In contrast with that, the Kautz digraph K(d, k) has vertices x1x2 . . . xk, where xi ∈
Zd+1, xi 6= xi+1 for i = 1, . . . , k − 1, and adjacencies:

x1x2 . . . xk → x2x3 . . . xky, y ∈ Zd+1 \ {xk}. (2)

Notice that, according to (1) and (2), an arc of a De Bruijn or Kautz digraph can be
represented by a sequence of type x1x2x3 . . . xky, satisfying the respective conditions.

Furthermore, the mapping

φ : x1x2 . . . xk 7→ (x1; (x2 − x1) . . . (xk − xk−1))

leads to the two following alternative definitions.

The De Bruijn digraph B(d, k) has vertices (β1; β2β3 . . . βk), where βi ∈ Zd, and
adjacencies:

(β1; β2β3 . . . βk) → (β1 + β2; β3 . . . βkγ), γ ∈ Zd, (3)

since, from (1),

φ(x1x2 . . . xk) = (x1; (x2 − x1) . . . (xk − xk−1)) = (β1; β2β3 . . . βk),

φ(x2 . . . xky) = (x2; (x3 − x2) . . . (y − xk)) = (β1 + β2; β3 . . . βkγ).

Similarly, the Kautz digraph K(d, k) has vertices (β1; β2β3 . . . βk), where β1 ∈
Zd+1, βi ∈ Zd+1 \ {0} for i = 2, . . . , k, and adjacencies:

(β1; β2β3 . . . βk) → (β1 + β2; β3 . . . βkγ), γ ∈ Zd+1 \ {0}. (4)
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Note that the inverse mapping of φ is

φ−1 : (β1; β2 . . . βk) 7→ β1(β1 + β2)(β1 + β2 + β3) . . . (β1 + β2 + · · ·+ βk). (5)

Besides, by using the notations in (1) and (2), the mapping

ψ : x1x2 . . . xk 7→ β1β2 . . . βk−1,

where βi = xi+1− xi, is a homomorphism from the Kautz digraph K(d, k) to the De
Bruijn digraph B(d, k − 1).

Now we show that both De Bruijn and Kautz digraphs can be seen as lifts of
smaller De Bruijn digraphs with appropriate voltage assignments.

Proposition 3.1. The isomorphism B(d, k+ 1) ∼= B(d, k)α holds with the following
voltage assignment:

α : E(B(d, k))→ Zd
x1 . . . xkxk+1 7→ x1.

(6)

Proof. The vertices of the arc x1 . . . xk → x2 . . . xk+1 in B(d, k), with voltage x1,
give rise to the vertex subsets X = {(x;x1 . . . xk) : x ∈ Zd} and Y = {(y;x2 . . . xk+1) :
y ∈ Zd} in B(d, k)α. According to (6), each vertex (x;x1 . . . xk) is adjacent to vertex
(y;x2 . . . xk+1) with y = x + α(x1 . . . xkxk+1) = x + x1. This corresponds to the
adjacencies of De Bruijn digraph B(d, k + 1), with the definition (3).

Alternatively, the inverse mapping (5) leads to

x(x+ x1) . . . (x+ x1 + · · ·+ xk)→ y(y + x2) . . . (y + x2 + · · ·+ xk+1)

= (x+ x1)(x+ x1 + x2) . . . (x+ x1 + · · ·+ xk+1),

in concordance with (1).

As an example, Figure 1 shows how to obtain B(2, 3) as a lifted digraph of B(2, 2).

Similarly, the following result shows that Kautz digraphs can be seen as lifted
digraphs of De Bruijn digraphs.

Proposition 3.2. The isomorphism K(d, k+ 1) ∼= B(d, k)β holds with the following
voltage assignment:

β : E(B(d, k))→ Zd+1

x1 . . . xkxk+1 7→ x1,
(7)

where xi ∈ Zd+1 \ {0} for every i = 1, . . . , k + 1.

Proof. The proof is basically the same as that of Proposition 3.1. Indeed, the vertices
of the arc x1 . . . xk → x2 . . . xk+1 in B(d, k), with xi ∈ Zd+1\{0} and voltage x1, give
rise to the vertex subsets X = {(x;x1 . . . xk) : x ∈ Zd+1} and Y = {(y;x2 . . . xk+1) :
y ∈ Zd+1} in B(d, k)β. According to (7), each vertex (x;x1 . . . xk) is adjacent to
vertex (y;x2 . . . xk+1) with y = x + β(x1 . . . xkxk+1) = x + x1. This corresponds to
the adjacencies of Kautz digraph K(d, k + 1), with the definition (4).

By way of example, in Figure 2 we show how K(2, 3) can be seen as a lifted
digraph of B(2, 2).



C. DALFÓ ET AL. / AUSTRALAS. J. COMBIN. 69 (3) (2017), 323–333 328

0 1

1 1

0 0

00 11

10

01

B(2,2)

0

1

1

0

a
B(2,3) L(B(2,2)) B(2,2)@@

0 1

0 1

0 1

000

111

110

010

011

001

101

100

Figure 1: B(2, 3) as a lifted digraph of the base digraph B(2, 2).
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Figure 2: K(2, 3) as a lifted digraph of the base digraph B(2, 2).

4 Quotient digraphs and line digraphs

In the more general context of nonrestricted maps, we now consider the quotient
digraphs, and the equivalent constructions of vertex-split digraphs and partial line
digraphs.

4.1 Regular partitions and quotient digraphs

Let Γ = (V,E) be a digraph with n vertices. A partition π of its vertex set V =
U1∪U2∪ · · ·∪Um, for m ≤ n, is called regular if the number cij of arcs from a vertex
u ∈ Ui to vertices in Uj only depends on i and j. The numbers cij are usually called
intersection parameters of the partition. The quotient digraph of Γ with respect to
π, denoted by π(Γ), has vertices the subsets Ui, for i = 1, . . . ,m, and cij parallel arcs
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from vertex Ui to vertex Uj.

4.2 Line digraphs

In the line digraph L(Γ) of a digraph Γ, each vertex represents an arc of Γ, that is,
V (L(Γ)) = {uv : (u, v) ∈ E(G)}, and a vertex uv is adjacent to a vertex wz when the
arc (u, v) is adjacent to the arc (w, z): u→ v(= w)→ z. Line digraphs have shown to
be very interesting structures in the study of dense digraphs (that is, digraphs with a
large number of vertices for given degree and diameter). Moreover, it is know that the
iteration of the line digraph technique yields digraphs with maximum connectivity.
For more details, see, for instance the papers by Fiol, Yebra, and Alegre [7, 8], and
Fàbrega and Fiol [5]. Furthermore, by the Heuchenne’s condition [11], a digraph Γ is
a line digraph if and only if, for every pair of vertices u and v, either Γ+(u) = Γ+(v)
or Γ+(u) ∩ Γ+(v) = ∅.

4.3 Regular partitions versus line digraphs

The following result shows that the quotient and line digraph operations commute.

Proposition 4.1. Every regular partition π of a digraph Γ induces a regular partition
π′ in its line digraph L(Γ) and

L(π(Γ)) ∼= π′(L(G)). (8)

Proof. Let π = {Ui : 1 ≤ i ≤ m} be a regular partition of Γ with intersection
parameters cij. Then, consider the induced partition of its arcs (or vertices of L(Γ))
π′ = {Uij : 1 ≤ i, j ≤ m} with sets Uij = {uiuj : ui ∈ Ui, uj ∈ Uj}. This partition
is also regular since, from the definition of line digraph, the number of arcs from a
vertex uiuj ∈ Uij to any vertex ukuh ∈ Ukh is cjk. To prove the digraph isomorphism
(8), assume that L(π(Γ)) has the arc UiUj → UjUk. This means that in Γ there is
the path ui → uj → uk, where ui ∈ Ui, uj ∈ Uj and uk ∈ Uk. But uiuj ∈ Uij and
ujuk ∈ Ujk so that, in π′(L(G)), there is the arc Uij → Ujk and this concludes the
proof.

In Figure 3 we show an example of this ‘commutative property’.

4.4 From line digraphs to line digraphs

Now we show a sufficient condition for being a line digraph be kept when applying
the voltage digraph technique.

Proposition 4.2. Let Γ = (V,E) be a digraph endowed with a voltage assignment α.
If Γ is a line digraph, and for every pair of vertices u and v with common out-neighbor
sets Γ+(u) = Γ+(v) = {x1, . . . , xδ}, we have

α(uxi)α(vxi)
−1 = α(uxj)α(vxj)

−1, i, j = 1, . . . , δ, (9)

then, the lifted digraph Γα is again a line digraph.
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Figure 3: The line and quotient digraph operations commute.

Proof. It suffices to prove that Γα satisfies Heuchenne’s condition. With this aim, let
uxi, uxj ∈ E, so that in Γα the vertex (u, g) is adjacent to the vertices (xi, gα(uxi))
and (xj, gα(uxj)). Now, if there is a vertex v ∈ V such that vxi ∈ E, we also have
vxj ∈ E (because Γ is a line digraph). But the former implies that vertex (v, h),
where h = gα(uxi)α(vxi)

−1 is adjacent to vertex

(xi, hα(vxi)) = (xi, gα(uxi)).

Moreover, from (9) interchanging i and j, we get α(vxj) = α(vxi)α(uxi)
−1α(uxj).

Thus, the vertex (v, h) is also adjacent to the vertex

(xj, hα(vxj)) = (xj, gα(uxj)).

Consequently, the vertices (u, g) and (v, h) satisfy Heuchenne’s condition and Γα is
a line digraph.

4.5 Vertex-splitting

Let us now consider what we call the vertex-splitting method to “blow up” a digraph.
Given a digraph Γ = (V,E) on n vertices and m arcs, the vertex-split digraph Sµ(Γ),
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where n ≤ µ ≤ m is constructed as follows. Every vertex v ∈ V is split into ι(v)
vertices v1, . . . , vι(v), where 1 ≤ ι(v) ≤ δ−(v). Thus the order of Sµ(Γ) is

µ =
∑
v∈V

ι(v) ≤
∑
v∈V

δ−(v),

satisfying n ≤ µ ≤ m. Moreover, for each arc vw ∈ E, we choose any vertex, say
wj, with 1 ≤ j ≤ ι(w), and set the arcs viwj for every i = 1, . . . , ι(v). We proceed
in this way with all the arcs of Γ, with the condition that, in the end, all vertices of
Sµ(Γ) must have nonzero indegree. (Notice that this is always possible, as ι(u) ≥ 1
for every u ∈ V .)

4.6 Partial line digraphs

The above method is shown to be equivalent to the partial line digraph technique,
that was proposed by Fiol and Lladó in [6], which is as follows. Given the digraph
Γ(V,E) as above, let E ′ ⊆ E a subset of µ arcs satisfying {v : uv ∈ E ′} = V , so
that n ≤ µ ≤ m. Then in the partial line digraph of Γ, denoted by Lµ(G), each
vertex represents an arc of E ′, and a vertex uv is adjacent to the vertices v′w for
each w ∈ Γ+(v), where

1. v′ = v, if vw ∈ E ′,

2. v′ is any other vertex of Γ such that v′w ∈ E ′, otherwise.

Lemma 4.3. By appropriately choosing the above µ =
∑

v∈V ι(v) vertices, and the
µ = |E ′| arcs, in the construction of the vertex-split and partial line digraph, respec-
tively, of the digraph Γ, we have the isomorphism

Sµ(Γ) ∼= Lµ(Γ). (10)

Proof. Let the partial line digraph Lµ(Γ) be constructed from the arc set E ′. Then,
in constructing Sµ(Γ), every vertex v of Γ is split into the vertices v1, . . . , vι(v) if and
only if vjv ∈ E ′ for every j = 1, . . . , ι(v). Now, for every v ∈ V , assume that uv ∈ E ′.
Then, in Sµ(Γ) we have vi = u for some j = 1, . . . , ι(v). Assuming that vw ∈ E, we
have to consider two cases:

• If vw ∈ E ′, then in Sµ(Γ) we choose every vertex vi, for i = 1 . . . , ι(v), to be
adjacent to the vertex wj = v.

• Otherwise, in Lµ(Γ) we choose the vertex uv to be adjacent to the vertex v′w,
where v′ = wj (for the chosen vertex wj in Sµ(Γ)).

Then, it is clear that this gives the claimed isomorphism between both digraphs.

In particular, when ι(u) = δ−(u) for every u, we have Sm(Γ) ∼= L(Γ).

As an straightforward consequence of the isomorphism (10) we have the following
result.
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Lemma 4.4. Every partial line digraph Lµ(Γ) of a digraph Γ = (V,E) can be seen
as an expanded digraph of Γ with appropriate set Φ of mappings.

Proof. Consider the expanded digraph ΓΦ, where each vertex v ∈ V has assigned
the set Uv = {v1, . . . , vι(v)} of vertices that it has split into to obtain Sµ(Γ) ∼= Lµ(Γ).
Besides, if v → w, then take the mapping φvw ∈ Φ that sends each vi to the chosen
vertex wj ∈ Uw.

Moreover, the diameter and mean distance of the vertex-split digraph Sµ(Γ) is
only increased by at most one.

Proposition 4.5. Let Γ be a digraph different from a cycle, with diameter D and
mean distance D. Then, the diameter D∗ and mean distance D

∗
of the vertex-split

digraph Sµ(Γ), with µ > m, satisfy:

D∗ = D + 1,

D
∗
< D + 1.

Proof. This is again a consequence of the isomorphism (10), together with the result
proved in the context of partial line digraphs (see Fiol and Lladó [6]).
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